LRU Design and development
A line-replaceable unit (LRU), lower line-replaceable unit(LLRU), line-replaceable component (LRC), or line-replaceable item (LRI) is a modular component of an airplane, ship or spacecraft (or any other manufactured device) that is designed to be replaced quickly at an operating location. An LRU is usually a sealed unit such as a radio or other auxiliary equipment. LRUs are typically assigned logistics control numbers (LCNs) or work unit codes (WUCs) to manage logistics operations.
LRUs improve maintenance operations, because they can be stocked and replaced quickly from on-site inventory, restoring the system to service, while the failed (unserviceable) LRU is undergoing maintenance. Because they are modular, they also reduce system costs and increase quality, by centralizing development across different models of vehicles
LRUs are designed to specifications to assure that they can be interchanged, especially if they are from different manufacturers. Usually a class of LRUs will have coordinated environmental specifications (i.e. temperature, condensation, etc.). However, each particular LRU will also have detailed specifications describing its function, tray size, tray connectors, attachment points, weight ranges, etc. It is common for LRU trays to have standardized connections for rapid mounting, cooling air, power, and grounding. The mounting hardware is often manually removable standard-screw-detent quick-release fittings. Front-mounted electrical connectors are often jacks for ring-locked cannon plugs that can be removed and replaced (R&R) without tools. Specifications also define the supporting tools necessary to remove and replace the unit. Many require no tools, or a standard-sized Frearson screwdriver. Frearson is specified for some vehicles and many marine systems because Frearson screws keep their mating screwdriver from camming out, and the same screwdriver can be used on many sizes of screws. Most LRUs also have handles, and specific requirements for their bulk and weight. LRUs typically need to be "transportable" and fit through a door or hatchway. There are also requirements for flammability, unwanted radio emissions, resistance to damage from fungus, static electricity, heat, pressure, humidity, condensation drips, vibration, radiation, and other environmental measurements.
LRUs improve maintenance operations, because they can be stocked and replaced quickly from on-site inventory, restoring the system to service, while the failed (unserviceable) LRU is undergoing maintenance. Because they are modular, they also reduce system costs and increase quality, by centralizing development across different models of vehicles
LRUs are designed to specifications to assure that they can be interchanged, especially if they are from different manufacturers. Usually a class of LRUs will have coordinated environmental specifications (i.e. temperature, condensation, etc.). However, each particular LRU will also have detailed specifications describing its function, tray size, tray connectors, attachment points, weight ranges, etc. It is common for LRU trays to have standardized connections for rapid mounting, cooling air, power, and grounding. The mounting hardware is often manually removable standard-screw-detent quick-release fittings. Front-mounted electrical connectors are often jacks for ring-locked cannon plugs that can be removed and replaced (R&R) without tools. Specifications also define the supporting tools necessary to remove and replace the unit. Many require no tools, or a standard-sized Frearson screwdriver. Frearson is specified for some vehicles and many marine systems because Frearson screws keep their mating screwdriver from camming out, and the same screwdriver can be used on many sizes of screws. Most LRUs also have handles, and specific requirements for their bulk and weight. LRUs typically need to be "transportable" and fit through a door or hatchway. There are also requirements for flammability, unwanted radio emissions, resistance to damage from fungus, static electricity, heat, pressure, humidity, condensation drips, vibration, radiation, and other environmental measurements.